Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubassa.s | |
|
issubassa.l | |
||
issubassa.v | |
||
issubassa.o | |
||
Assertion | issubassa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubassa.s | |
|
2 | issubassa.l | |
|
3 | issubassa.v | |
|
4 | issubassa.o | |
|
5 | simpl1 | |
|
6 | assaring | |
|
7 | 5 6 | syl | |
8 | assaring | |
|
9 | 8 | adantl | |
10 | 1 9 | eqeltrrid | |
11 | simpl3 | |
|
12 | simpl2 | |
|
13 | 11 12 | jca | |
14 | 3 4 | issubrg | |
15 | 7 10 13 14 | syl21anbrc | |
16 | assalmod | |
|
17 | 16 | adantl | |
18 | assalmod | |
|
19 | 1 3 2 | islss3 | |
20 | 5 18 19 | 3syl | |
21 | 11 17 20 | mpbir2and | |
22 | 15 21 | jca | |
23 | 1 2 | issubassa3 | |
24 | 23 | 3ad2antl1 | |
25 | 22 24 | impbida | |