Metamath Proof Explorer


Theorem issubassa

Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses issubassa.s S=W𝑠A
issubassa.l L=LSubSpW
issubassa.v V=BaseW
issubassa.o 1˙=1W
Assertion issubassa WAssAlg1˙AAVSAssAlgASubRingWAL

Proof

Step Hyp Ref Expression
1 issubassa.s S=W𝑠A
2 issubassa.l L=LSubSpW
3 issubassa.v V=BaseW
4 issubassa.o 1˙=1W
5 simpl1 WAssAlg1˙AAVSAssAlgWAssAlg
6 assaring WAssAlgWRing
7 5 6 syl WAssAlg1˙AAVSAssAlgWRing
8 assaring SAssAlgSRing
9 8 adantl WAssAlg1˙AAVSAssAlgSRing
10 1 9 eqeltrrid WAssAlg1˙AAVSAssAlgW𝑠ARing
11 simpl3 WAssAlg1˙AAVSAssAlgAV
12 simpl2 WAssAlg1˙AAVSAssAlg1˙A
13 11 12 jca WAssAlg1˙AAVSAssAlgAV1˙A
14 3 4 issubrg ASubRingWWRingW𝑠ARingAV1˙A
15 7 10 13 14 syl21anbrc WAssAlg1˙AAVSAssAlgASubRingW
16 assalmod SAssAlgSLMod
17 16 adantl WAssAlg1˙AAVSAssAlgSLMod
18 assalmod WAssAlgWLMod
19 1 3 2 islss3 WLModALAVSLMod
20 5 18 19 3syl WAssAlg1˙AAVSAssAlgALAVSLMod
21 11 17 20 mpbir2and WAssAlg1˙AAVSAssAlgAL
22 15 21 jca WAssAlg1˙AAVSAssAlgASubRingWAL
23 1 2 issubassa3 WAssAlgASubRingWALSAssAlg
24 23 3ad2antl1 WAssAlg1˙AAVASubRingWALSAssAlg
25 22 24 impbida WAssAlg1˙AAVSAssAlgASubRingWAL