Metamath Proof Explorer


Theorem ist0

Description: The predicate "is a T_0 space". Every pair of distinct points is topologically distinguishable. For the way this definition is usually encountered, see ist0-3 . (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 X=J
Assertion ist0 JKol2JTopxXyXoJxoyox=y

Proof

Step Hyp Ref Expression
1 ist0.1 X=J
2 unieq j=Jj=J
3 2 1 eqtr4di j=Jj=X
4 raleq j=JojxoyooJxoyo
5 4 imbi1d j=Jojxoyox=yoJxoyox=y
6 3 5 raleqbidv j=Jyjojxoyox=yyXoJxoyox=y
7 3 6 raleqbidv j=Jxjyjojxoyox=yxXyXoJxoyox=y
8 df-t0 Kol2=jTop|xjyjojxoyox=y
9 7 8 elrab2 JKol2JTopxXyXoJxoyox=y