Metamath Proof Explorer


Theorem isumclim

Description: An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim.1 Z=M
isumclim.2 φM
isumclim.3 φkZFk=A
isumclim.4 φkZA
isumclim.6 φseqM+FB
Assertion isumclim φkZA=B

Proof

Step Hyp Ref Expression
1 isumclim.1 Z=M
2 isumclim.2 φM
3 isumclim.3 φkZFk=A
4 isumclim.4 φkZA
5 isumclim.6 φseqM+FB
6 1 2 3 4 isum φkZA=seqM+F
7 fclim :dom
8 ffun :domFun
9 7 8 ax-mp Fun
10 funbrfv FunseqM+FBseqM+F=B
11 9 5 10 mpsyl φseqM+F=B
12 6 11 eqtrd φkZA=B