Metamath Proof Explorer


Theorem isumdivc

Description: An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 Z=M
isumcl.2 φM
isumcl.3 φkZFk=A
isumcl.4 φkZA
isumcl.5 φseqM+Fdom
summulc.6 φB
isumdivc.7 φB0
Assertion isumdivc φkZAB=kZAB

Proof

Step Hyp Ref Expression
1 isumcl.1 Z=M
2 isumcl.2 φM
3 isumcl.3 φkZFk=A
4 isumcl.4 φkZA
5 isumcl.5 φseqM+Fdom
6 summulc.6 φB
7 isumdivc.7 φB0
8 6 7 reccld φ1B
9 1 2 3 4 5 8 isummulc1 φkZA1B=kZA1B
10 1 2 3 4 5 isumcl φkZA
11 10 6 7 divrecd φkZAB=kZA1B
12 6 adantr φkZB
13 7 adantr φkZB0
14 4 12 13 divrecd φkZAB=A1B
15 14 sumeq2dv φkZAB=kZA1B
16 9 11 15 3eqtr4d φkZAB=kZAB