Metamath Proof Explorer


Theorem isupwlkg

Description: Generalization of isupwlk : Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021)

Ref Expression
Hypotheses upwlksfval.v V=VtxG
upwlksfval.i I=iEdgG
Assertion isupwlkg GWFUPWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 upwlksfval.v V=VtxG
2 upwlksfval.i I=iEdgG
3 1 2 upwlksfval GVUPWalksG=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1
4 3 brfvopab FUPWalksGPGVFVPV
5 4 a1i GWFUPWalksGPGVFVPV
6 elex GWGV
7 elex FWorddomIFV
8 ovex 0FV
9 1 fvexi VV
10 8 9 fpm P:0FVPV𝑝𝑚0F
11 10 elexd P:0FVPV
12 7 11 anim12i FWorddomIP:0FVFVPV
13 12 3adant3 FWorddomIP:0FVk0..^FIFk=PkPk+1FVPV
14 6 13 anim12i GWFWorddomIP:0FVk0..^FIFk=PkPk+1GVFVPV
15 14 ex GWFWorddomIP:0FVk0..^FIFk=PkPk+1GVFVPV
16 3anass GVFVPVGVFVPV
17 15 16 syl6ibr GWFWorddomIP:0FVk0..^FIFk=PkPk+1GVFVPV
18 1 2 isupwlk GVFVPVFUPWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1
19 18 a1i GWGVFVPVFUPWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1
20 5 17 19 pm5.21ndd GWFUPWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1