Metamath Proof Explorer


Theorem isvcOLD

Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008) Obsolete version of iscvsp . (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis isvcOLD.1 X=ranG
Assertion isvcOLD GSCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx

Proof

Step Hyp Ref Expression
1 isvcOLD.1 X=ranG
2 vcex GSCVecOLDGVSV
3 elex GAbelOpGV
4 3 adantr GAbelOpS:×XXGV
5 cnex V
6 ablogrpo GAbelOpGGrpOp
7 rnexg GGrpOpranGV
8 1 7 eqeltrid GGrpOpXV
9 6 8 syl GAbelOpXV
10 xpexg VXV×XV
11 5 9 10 sylancr GAbelOp×XV
12 fex S:×XX×XVSV
13 11 12 sylan2 S:×XXGAbelOpSV
14 13 ancoms GAbelOpS:×XXSV
15 4 14 jca GAbelOpS:×XXGVSV
16 15 3adant3 GAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSxGVSV
17 1 isvclem GVSVGSCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx
18 2 16 17 pm5.21nii GSCVecOLDGAbelOpS:×XXxX1Sx=xyzXySxGz=ySxGySzzy+zSx=ySxGzSxyzSx=ySzSx