Metamath Proof Explorer


Theorem iswrd

Description: Property of being a word over a set with an existential quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion iswrd WWordSl0W:0..^lS

Proof

Step Hyp Ref Expression
1 df-word WordS=w|l0w:0..^lS
2 1 eleq2i WWordSWw|l0w:0..^lS
3 ovex 0..^lV
4 fex W:0..^lS0..^lVWV
5 3 4 mpan2 W:0..^lSWV
6 5 rexlimivw l0W:0..^lSWV
7 feq1 w=Ww:0..^lSW:0..^lS
8 7 rexbidv w=Wl0w:0..^lSl0W:0..^lS
9 6 8 elab3 Ww|l0w:0..^lSl0W:0..^lS
10 2 9 bitri WWordSl0W:0..^lS