Metamath Proof Explorer


Theorem itcovalpclem1

Description: Lemma 1 for itcovalpc : induction basis. (Contributed by AV, 4-May-2024)

Ref Expression
Hypothesis itcovalpc.f F=n0n+C
Assertion itcovalpclem1 Could not format assertion : No typesetting found for |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcovalpc.f F=n0n+C
2 nn0ex 0V
3 ovexd n0n+CV
4 3 rgen n0n+CV
5 1 itcoval0mpt Could not format ( ( NN0 e. _V /\ A. n e. NN0 ( n + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) : No typesetting found for |- ( ( NN0 e. _V /\ A. n e. NN0 ( n + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) with typecode |-
6 2 4 5 mp2an Could not format ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) : No typesetting found for |- ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) with typecode |-
7 nn0cn C0C
8 7 mul01d C0C0=0
9 8 adantr C0n0C0=0
10 9 oveq2d C0n0n+C0=n+0
11 nn0cn n0n
12 11 addridd n0n+0=n
13 12 adantl C0n0n+0=n
14 10 13 eqtr2d C0n0n=n+C0
15 14 mpteq2dva C0n0n=n0n+C0
16 6 15 eqtrid Could not format ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) : No typesetting found for |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( n + ( C x. 0 ) ) ) ) with typecode |-