Metamath Proof Explorer


Theorem itcovalpclem2

Description: Lemma 2 for itcovalpc : induction step. (Contributed by AV, 4-May-2024)

Ref Expression
Hypothesis itcovalpc.f F=n0n+C
Assertion itcovalpclem2 Could not format assertion : No typesetting found for |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcovalpc.f F=n0n+C
2 nn0ex 0V
3 2 mptex n0n+CV
4 1 3 eqeltri FV
5 simpl y0C0y0
6 simpr Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) with typecode |-
7 itcovalsucov Could not format ( ( F e. _V /\ y e. NN0 /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) ) : No typesetting found for |- ( ( F e. _V /\ y e. NN0 /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) ) with typecode |-
8 4 5 6 7 mp3an2ani Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) ) with typecode |-
9 simpr y0C0n0n0
10 simplr y0C0n0C0
11 5 adantr y0C0n0y0
12 10 11 nn0mulcld y0C0n0Cy0
13 9 12 nn0addcld y0C0n0n+Cy0
14 eqidd y0C0n0n+Cy=n0n+Cy
15 oveq1 n=mn+C=m+C
16 15 cbvmptv n0n+C=m0m+C
17 1 16 eqtri F=m0m+C
18 17 a1i y0C0F=m0m+C
19 oveq1 m=n+Cym+C=n+Cy+C
20 13 14 18 19 fmptco y0C0Fn0n+Cy=n0n+Cy+C
21 9 nn0cnd y0C0n0n
22 12 nn0cnd y0C0n0Cy
23 10 nn0cnd y0C0n0C
24 21 22 23 addassd y0C0n0n+Cy+C=n+Cy+C
25 nn0cn C0C
26 25 mulridd C0C1=C
27 26 adantl y0C0C1=C
28 27 eqcomd y0C0C=C1
29 28 oveq2d y0C0Cy+C=Cy+C1
30 simpr y0C0C0
31 30 nn0cnd y0C0C
32 5 nn0cnd y0C0y
33 1cnd y0C01
34 31 32 33 adddid y0C0Cy+1=Cy+C1
35 29 34 eqtr4d y0C0Cy+C=Cy+1
36 35 oveq2d y0C0n+Cy+C=n+Cy+1
37 36 adantr y0C0n0n+Cy+C=n+Cy+1
38 24 37 eqtrd y0C0n0n+Cy+C=n+Cy+1
39 38 mpteq2dva y0C0n0n+Cy+C=n0n+Cy+1
40 20 39 eqtrd y0C0Fn0n+Cy=n0n+Cy+1
41 40 adantr Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( F o. ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( F o. ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) with typecode |-
42 8 41 eqtrd Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) with typecode |-
43 42 ex Could not format ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) ) : No typesetting found for |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( n + ( C x. y ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( n + ( C x. ( y + 1 ) ) ) ) ) ) with typecode |-