| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itcovalpc.f |
|
| 2 |
|
nn0ex |
|
| 3 |
2
|
mptex |
|
| 4 |
1 3
|
eqeltri |
|
| 5 |
|
simpl |
|
| 6 |
|
simpr |
|
| 7 |
|
itcovalsucov |
|
| 8 |
4 5 6 7
|
mp3an2ani |
|
| 9 |
|
simpr |
|
| 10 |
|
simplr |
|
| 11 |
5
|
adantr |
|
| 12 |
10 11
|
nn0mulcld |
|
| 13 |
9 12
|
nn0addcld |
|
| 14 |
|
eqidd |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
cbvmptv |
|
| 17 |
1 16
|
eqtri |
|
| 18 |
17
|
a1i |
|
| 19 |
|
oveq1 |
|
| 20 |
13 14 18 19
|
fmptco |
|
| 21 |
9
|
nn0cnd |
|
| 22 |
12
|
nn0cnd |
|
| 23 |
10
|
nn0cnd |
|
| 24 |
21 22 23
|
addassd |
|
| 25 |
|
nn0cn |
|
| 26 |
25
|
mulridd |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
eqcomd |
|
| 29 |
28
|
oveq2d |
|
| 30 |
|
simpr |
|
| 31 |
30
|
nn0cnd |
|
| 32 |
5
|
nn0cnd |
|
| 33 |
|
1cnd |
|
| 34 |
31 32 33
|
adddid |
|
| 35 |
29 34
|
eqtr4d |
|
| 36 |
35
|
oveq2d |
|
| 37 |
36
|
adantr |
|
| 38 |
24 37
|
eqtrd |
|
| 39 |
38
|
mpteq2dva |
|
| 40 |
20 39
|
eqtrd |
|
| 41 |
40
|
adantr |
|
| 42 |
8 41
|
eqtrd |
|
| 43 |
42
|
ex |
|