Metamath Proof Explorer


Theorem itgoss

Description: An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion itgoss STTIntgOverSIntgOverT

Proof

Step Hyp Ref Expression
1 plyss STTPolySPolyT
2 ssrexv PolySPolyTbPolySba=0coeffbdegb=1bPolyTba=0coeffbdegb=1
3 1 2 syl STTbPolySba=0coeffbdegb=1bPolyTba=0coeffbdegb=1
4 3 adantr STTabPolySba=0coeffbdegb=1bPolyTba=0coeffbdegb=1
5 4 ss2rabdv STTa|bPolySba=0coeffbdegb=1a|bPolyTba=0coeffbdegb=1
6 sstr STTS
7 itgoval SIntgOverS=a|bPolySba=0coeffbdegb=1
8 6 7 syl STTIntgOverS=a|bPolySba=0coeffbdegb=1
9 itgoval TIntgOverT=a|bPolyTba=0coeffbdegb=1
10 9 adantl STTIntgOverT=a|bPolyTba=0coeffbdegb=1
11 5 8 10 3sstr4d STTIntgOverSIntgOverT