Metamath Proof Explorer


Theorem iuneqconst2

Description: Indexed union of identical classes. (Contributed by Zhi Wang, 6-Nov-2025)

Ref Expression
Assertion iuneqconst2 A x A B = C x A B = C

Proof

Step Hyp Ref Expression
1 eqimss B = C B C
2 1 ralimi x A B = C x A B C
3 2 adantl A x A B = C x A B C
4 iunss x A B C x A B C
5 3 4 sylibr A x A B = C x A B C
6 r19.2z A x A B = C x A B = C
7 eqimss2 B = C C B
8 7 reximi x A B = C x A C B
9 ssiun x A C B C x A B
10 6 8 9 3syl A x A B = C C x A B
11 5 10 eqssd A x A B = C x A B = C