Metamath Proof Explorer


Theorem iunon

Description: The indexed union of a set of ordinal numbers B ( x ) is an ordinal number. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 5-Dec-2016)

Ref Expression
Assertion iunon AVxABOnxABOn

Proof

Step Hyp Ref Expression
1 dfiun3g xABOnxAB=ranxAB
2 1 adantl AVxABOnxAB=ranxAB
3 mptexg AVxABV
4 rnexg xABVranxABV
5 3 4 syl AVranxABV
6 eqid xAB=xAB
7 6 rnmptss xABOnranxABOn
8 ssonuni ranxABVranxABOnranxABOn
9 8 imp ranxABVranxABOnranxABOn
10 5 7 9 syl2an AVxABOnranxABOn
11 2 10 eqeltrd AVxABOnxABOn