Metamath Proof Explorer


Theorem ixpf

Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006)

Ref Expression
Assertion ixpf FxABF:AxAB

Proof

Step Hyp Ref Expression
1 elixp2 FxABFVFFnAxAFxB
2 ssiun2 xABxAB
3 2 sseld xAFxBFxxAB
4 3 ralimia xAFxBxAFxxAB
5 4 anim2i FFnAxAFxBFFnAxAFxxAB
6 nfcv _xA
7 nfiu1 _xxAB
8 nfcv _xF
9 6 7 8 ffnfvf F:AxABFFnAxAFxxAB
10 5 9 sylibr FFnAxAFxBF:AxAB
11 10 3adant1 FVFFnAxAFxBF:AxAB
12 1 11 sylbi FxABF:AxAB