Metamath Proof Explorer


Theorem jm3.1lem3

Description: Lemma for jm3.1 . (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Hypotheses jm3.1.a φA2
jm3.1.b φK2
jm3.1.c φN
jm3.1.d φKYrmN+1A
Assertion jm3.1lem3 φ2AK-K2-1

Proof

Step Hyp Ref Expression
1 jm3.1.a φA2
2 jm3.1.b φK2
3 jm3.1.c φN
4 jm3.1.d φKYrmN+1A
5 2z 2
6 eluzelz A2A
7 1 6 syl φA
8 zmulcl 2A2A
9 5 7 8 sylancr φ2A
10 eluz2nn K2K
11 2 10 syl φK
12 11 nnzd φK
13 9 12 zmulcld φ2AK
14 zsqcl KK2
15 12 14 syl φK2
16 13 15 zsubcld φ2AKK2
17 peano2zm 2AKK22AK-K2-1
18 16 17 syl φ2AK-K2-1
19 0red φ0
20 3 nnnn0d φN0
21 11 20 nnexpcld φKN
22 21 nnred φKN
23 18 zred φ2AK-K2-1
24 21 nngt0d φ0<KN
25 1 2 3 4 jm3.1lem2 φKN<2AK-K2-1
26 19 22 23 24 25 lttrd φ0<2AK-K2-1
27 elnnz 2AK-K2-12AK-K2-10<2AK-K2-1
28 18 26 27 sylanbrc φ2AK-K2-1