Metamath Proof Explorer


Theorem jm3.1lem3

Description: Lemma for jm3.1 . (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Hypotheses jm3.1.a φ A 2
jm3.1.b φ K 2
jm3.1.c φ N
jm3.1.d φ K Y rm N + 1 A
Assertion jm3.1lem3 φ 2 A K - K 2 - 1

Proof

Step Hyp Ref Expression
1 jm3.1.a φ A 2
2 jm3.1.b φ K 2
3 jm3.1.c φ N
4 jm3.1.d φ K Y rm N + 1 A
5 2z 2
6 eluzelz A 2 A
7 1 6 syl φ A
8 zmulcl 2 A 2 A
9 5 7 8 sylancr φ 2 A
10 eluz2nn K 2 K
11 2 10 syl φ K
12 11 nnzd φ K
13 9 12 zmulcld φ 2 A K
14 zsqcl K K 2
15 12 14 syl φ K 2
16 13 15 zsubcld φ 2 A K K 2
17 peano2zm 2 A K K 2 2 A K - K 2 - 1
18 16 17 syl φ 2 A K - K 2 - 1
19 0red φ 0
20 3 nnnn0d φ N 0
21 11 20 nnexpcld φ K N
22 21 nnred φ K N
23 18 zred φ 2 A K - K 2 - 1
24 21 nngt0d φ 0 < K N
25 1 2 3 4 jm3.1lem2 φ K N < 2 A K - K 2 - 1
26 19 22 23 24 25 lttrd φ 0 < 2 A K - K 2 - 1
27 elnnz 2 A K - K 2 - 1 2 A K - K 2 - 1 0 < 2 A K - K 2 - 1
28 18 26 27 sylanbrc φ 2 A K - K 2 - 1