Metamath Proof Explorer


Theorem jumpncnp

Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses jumpncnp.k K=TopOpenfld
jumpncnp.a φA
jumpncnp.3 J=topGenran.
jumpncnp.f φF:A
jumpncnp.b φB
jumpncnp.lpt1 φBlimPtJA−∞B
jumpncnp.lpt2 φBlimPtJAB+∞
jumpncnp.8 φLF−∞BlimB
jumpncnp.9 φRFB+∞limB
jumpncnp.lner φLR
Assertion jumpncnp φ¬FJCnPTopOpenfldB

Proof

Step Hyp Ref Expression
1 jumpncnp.k K=TopOpenfld
2 jumpncnp.a φA
3 jumpncnp.3 J=topGenran.
4 jumpncnp.f φF:A
5 jumpncnp.b φB
6 jumpncnp.lpt1 φBlimPtJA−∞B
7 jumpncnp.lpt2 φBlimPtJAB+∞
8 jumpncnp.8 φLF−∞BlimB
9 jumpncnp.9 φRFB+∞limB
10 jumpncnp.lner φLR
11 1 2 3 4 6 7 8 9 10 limclner φFlimB=
12 ne0i FBFlimBFlimB
13 12 necon2bi FlimB=¬FBFlimB
14 11 13 syl φ¬FBFlimB
15 14 intnand φ¬F:FBFlimB
16 ax-resscn
17 eqid TopOpenfld=TopOpenfld
18 17 tgioo2 topGenran.=TopOpenfld𝑡
19 3 18 eqtri J=TopOpenfld𝑡
20 17 19 cnplimc BFJCnPTopOpenfldBF:FBFlimB
21 16 5 20 sylancr φFJCnPTopOpenfldBF:FBFlimB
22 15 21 mtbird φ¬FJCnPTopOpenfldB