Metamath Proof Explorer


Theorem k0004lem2

Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021)

Ref Expression
Assertion k0004lem2 A U B V C B F B A F A C F C A

Proof

Step Hyp Ref Expression
1 simp3 A U B V C B C B
2 sseqin2 C B B C = C
3 2 biimpi C B B C = C
4 3 eqcomd C B C = B C
5 k0004lem1 C = B C F : A B F A C F : A C
6 1 4 5 3syl A U B V C B F : A B F A C F : A C
7 simp2 A U B V C B B V
8 simp1 A U B V C B A U
9 7 8 elmapd A U B V C B F B A F : A B
10 9 anbi1d A U B V C B F B A F A C F : A B F A C
11 7 1 ssexd A U B V C B C V
12 11 8 elmapd A U B V C B F C A F : A C
13 6 10 12 3bitr4d A U B V C B F B A F A C F C A