Metamath Proof Explorer


Theorem k0004lem3

Description: When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021)

Ref Expression
Assertion k0004lem3 A U B V C B F B A F A = C F = A C

Proof

Step Hyp Ref Expression
1 sneq F A = C F A = C
2 eqimss F A = C F A C
3 1 2 syl F A = C F A C
4 fvex F A V
5 4 snsssn F A C F A = C
6 3 5 impbii F A = C F A C
7 elmapfn F B A F Fn A
8 simpl1 A U B V C B F B A A U
9 snidg A U A A
10 8 9 syl A U B V C B F B A A A
11 fnsnfv F Fn A A A F A = F A
12 7 10 11 syl2an2 A U B V C B F B A F A = F A
13 12 sseq1d A U B V C B F B A F A C F A C
14 6 13 syl5bb A U B V C B F B A F A = C F A C
15 14 pm5.32da A U B V C B F B A F A = C F B A F A C
16 snex A V
17 simp2 A U B V C B B V
18 simp3 A U B V C B C B
19 18 snssd A U B V C B C B
20 k0004lem2 A V B V C B F B A F A C F C A
21 16 17 19 20 mp3an2i A U B V C B F B A F A C F C A
22 snex C V
23 22 16 elmap F C A F : A C
24 fsng A U C B F : A C F = A C
25 24 3adant2 A U B V C B F : A C F = A C
26 23 25 syl5bb A U B V C B F C A F = A C
27 15 21 26 3bitrd A U B V C B F B A F A = C F = A C