Metamath Proof Explorer


Theorem k0004ss3

Description: The topological simplex of dimension N is a subset of the base set of Euclidean space of dimension ( N + 1 ) . (Contributed by RP, 29-Mar-2021)

Ref Expression
Hypothesis k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
Assertion k0004ss3 N 0 A N Base 𝔼 hil N + 1

Proof

Step Hyp Ref Expression
1 k0004.a A = n 0 t 0 1 1 n + 1 | k = 1 n + 1 t k = 1
2 1 k0004ss1 N 0 A N 1 N + 1
3 peano2nn0 N 0 N + 1 0
4 eqid 𝔼 hil N + 1 = 𝔼 hil N + 1
5 4 ehlbase N + 1 0 1 N + 1 = Base 𝔼 hil N + 1
6 3 5 syl N 0 1 N + 1 = Base 𝔼 hil N + 1
7 2 6 sseqtrd N 0 A N Base 𝔼 hil N + 1