Metamath Proof Explorer


Theorem kbass6

Description: Dirac bra-ket associative law ( | A >. <. B | ) ( | C >. <. D | ) = | A >. ( <. B | ( | C >. <. D | ) ) . (Contributed by NM, 30-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass6 A B C D A ketbra B C ketbra D = A ketbra bra -1 bra B C ketbra D

Proof

Step Hyp Ref Expression
1 kbass5 A B C D A ketbra B C ketbra D = A ketbra B C ketbra D
2 kbval A B C A ketbra B C = C ih B A
3 2 3expa A B C A ketbra B C = C ih B A
4 3 adantrr A B C D A ketbra B C = C ih B A
5 4 oveq1d A B C D A ketbra B C ketbra D = C ih B A ketbra D
6 hicl C B C ih B
7 kbmul C ih B A D C ih B A ketbra D = A ketbra C ih B D
8 6 7 syl3an1 C B A D C ih B A ketbra D = A ketbra C ih B D
9 8 3exp C B A D C ih B A ketbra D = A ketbra C ih B D
10 9 ex C B A D C ih B A ketbra D = A ketbra C ih B D
11 10 com13 A B C D C ih B A ketbra D = A ketbra C ih B D
12 11 imp43 A B C D C ih B A ketbra D = A ketbra C ih B D
13 bracl B C bra B C
14 bracnln D bra D LinFn ContFn
15 cnvbramul bra B C bra D LinFn ContFn bra -1 bra B C · fn bra D = bra B C bra -1 bra D
16 13 14 15 syl2an B C D bra -1 bra B C · fn bra D = bra B C bra -1 bra D
17 braval B C bra B C = C ih B
18 17 fveq2d B C bra B C = C ih B
19 cnvbrabra D bra -1 bra D = D
20 18 19 oveqan12d B C D bra B C bra -1 bra D = C ih B D
21 16 20 eqtr2d B C D C ih B D = bra -1 bra B C · fn bra D
22 21 anasss B C D C ih B D = bra -1 bra B C · fn bra D
23 kbass2 B C D bra B C · fn bra D = bra B C ketbra D
24 23 3expb B C D bra B C · fn bra D = bra B C ketbra D
25 24 fveq2d B C D bra -1 bra B C · fn bra D = bra -1 bra B C ketbra D
26 22 25 eqtr2d B C D bra -1 bra B C ketbra D = C ih B D
27 26 adantll A B C D bra -1 bra B C ketbra D = C ih B D
28 27 oveq2d A B C D A ketbra bra -1 bra B C ketbra D = A ketbra C ih B D
29 12 28 eqtr4d A B C D C ih B A ketbra D = A ketbra bra -1 bra B C ketbra D
30 1 5 29 3eqtrd A B C D A ketbra B C ketbra D = A ketbra bra -1 bra B C ketbra D