Metamath Proof Explorer


Theorem kbass2

Description: Dirac bra-ket associative law ( <. A | B >. ) <. C | = <. A | ( | B >. <. C | ) , i.e., the juxtaposition of an inner product with a bra equals a ket juxtaposed with an outer product. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbass2 A B C bra A B · fn bra C = bra A B ketbra C

Proof

Step Hyp Ref Expression
1 ovex bra A B bra C x V
2 eqid x bra A B bra C x = x bra A B bra C x
3 1 2 fnmpti x bra A B bra C x Fn
4 bracl A B bra A B
5 brafn C bra C :
6 hfmmval bra A B bra C : bra A B · fn bra C = x bra A B bra C x
7 4 5 6 syl2an A B C bra A B · fn bra C = x bra A B bra C x
8 7 3impa A B C bra A B · fn bra C = x bra A B bra C x
9 8 fneq1d A B C bra A B · fn bra C Fn x bra A B bra C x Fn
10 3 9 mpbiri A B C bra A B · fn bra C Fn
11 brafn A bra A :
12 kbop B C B ketbra C :
13 fco bra A : B ketbra C : bra A B ketbra C :
14 11 12 13 syl2an A B C bra A B ketbra C :
15 14 3impb A B C bra A B ketbra C :
16 15 ffnd A B C bra A B ketbra C Fn
17 simpl1 A B C x A
18 simpl2 A B C x B
19 braval A B bra A B = B ih A
20 17 18 19 syl2anc A B C x bra A B = B ih A
21 simpl3 A B C x C
22 simpr A B C x x
23 braval C x bra C x = x ih C
24 21 22 23 syl2anc A B C x bra C x = x ih C
25 20 24 oveq12d A B C x bra A B bra C x = B ih A x ih C
26 hicl B A B ih A
27 18 17 26 syl2anc A B C x B ih A
28 20 27 eqeltrd A B C x bra A B
29 21 5 syl A B C x bra C :
30 hfmval bra A B bra C : x bra A B · fn bra C x = bra A B bra C x
31 28 29 22 30 syl3anc A B C x bra A B · fn bra C x = bra A B bra C x
32 hicl x C x ih C
33 22 21 32 syl2anc A B C x x ih C
34 ax-his3 x ih C B A x ih C B ih A = x ih C B ih A
35 33 18 17 34 syl3anc A B C x x ih C B ih A = x ih C B ih A
36 12 3adant1 A B C B ketbra C :
37 fvco3 B ketbra C : x bra A B ketbra C x = bra A B ketbra C x
38 36 37 sylan A B C x bra A B ketbra C x = bra A B ketbra C x
39 kbval B C x B ketbra C x = x ih C B
40 18 21 22 39 syl3anc A B C x B ketbra C x = x ih C B
41 40 fveq2d A B C x bra A B ketbra C x = bra A x ih C B
42 hvmulcl x ih C B x ih C B
43 33 18 42 syl2anc A B C x x ih C B
44 braval A x ih C B bra A x ih C B = x ih C B ih A
45 17 43 44 syl2anc A B C x bra A x ih C B = x ih C B ih A
46 38 41 45 3eqtrd A B C x bra A B ketbra C x = x ih C B ih A
47 27 33 mulcomd A B C x B ih A x ih C = x ih C B ih A
48 35 46 47 3eqtr4d A B C x bra A B ketbra C x = B ih A x ih C
49 25 31 48 3eqtr4d A B C x bra A B · fn bra C x = bra A B ketbra C x
50 10 16 49 eqfnfvd A B C bra A B · fn bra C = bra A B ketbra C