Metamath Proof Explorer


Theorem kmlem8

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004)

Ref Expression
Assertion kmlem8 ¬zuwzψyzuz∃!wwzyzuwzψy¬yuzu∃!wwzy

Proof

Step Hyp Ref Expression
1 ralnex zu¬wzψ¬zuwzψ
2 df-rex wz¬ψwwz¬ψ
3 rexnal wz¬ψ¬wzψ
4 2 3 bitr3i wwz¬ψ¬wzψ
5 exsimpl wwz¬ψwwz
6 n0 zwwz
7 5 6 sylibr wwz¬ψz
8 4 7 sylbir ¬wzψz
9 8 ralimi zu¬wzψzuz
10 1 9 sylbir ¬zuwzψzuz
11 kmlem2 yzuz∃!wwzyy¬yuzuz∃!wwzy
12 biimt z∃!wwzyz∃!wwzy
13 12 ralimi zuzzu∃!wwzyz∃!wwzy
14 ralbi zu∃!wwzyz∃!wwzyzu∃!wwzyzuz∃!wwzy
15 13 14 syl zuzzu∃!wwzyzuz∃!wwzy
16 15 anbi2d zuz¬yuzu∃!wwzy¬yuzuz∃!wwzy
17 16 exbidv zuzy¬yuzu∃!wwzyy¬yuzuz∃!wwzy
18 11 17 bitr4id zuzyzuz∃!wwzyy¬yuzu∃!wwzy
19 10 18 syl ¬zuwzψyzuz∃!wwzyy¬yuzu∃!wwzy
20 19 pm5.74i ¬zuwzψyzuz∃!wwzy¬zuwzψy¬yuzu∃!wwzy
21 pm4.64 ¬zuwzψy¬yuzu∃!wwzyzuwzψy¬yuzu∃!wwzy
22 20 21 bitri ¬zuwzψyzuz∃!wwzyzuwzψy¬yuzu∃!wwzy