Metamath Proof Explorer


Theorem knoppcnlem2

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem2.t T = x x + 1 2 x
knoppcnlem2.n φ N
knoppcnlem2.1 φ C
knoppcnlem2.2 φ A
knoppcnlem2.3 φ M 0
Assertion knoppcnlem2 φ C M T 2 N M A

Proof

Step Hyp Ref Expression
1 knoppcnlem2.t T = x x + 1 2 x
2 knoppcnlem2.n φ N
3 knoppcnlem2.1 φ C
4 knoppcnlem2.2 φ A
5 knoppcnlem2.3 φ M 0
6 3 5 reexpcld φ C M
7 2re 2
8 7 a1i φ 2
9 nnre N N
10 2 9 syl φ N
11 8 10 remulcld φ 2 N
12 11 5 reexpcld φ 2 N M
13 12 4 remulcld φ 2 N M A
14 1 13 dnicld2 φ T 2 N M A
15 6 14 remulcld φ C M T 2 N M A