Metamath Proof Explorer


Theorem laddrotrd

Description: Rotate the variables right in an equation with addition on the left, converting it into a subtraction. Version of mvlladdd with a commuted consequent, and of mvrladdd with a commuted hypothesis. (Contributed by SN, 21-Aug-2024)

Ref Expression
Hypotheses laddrotrd.a φA
laddrotrd.b φB
laddrotrd.1 φA+B=C
Assertion laddrotrd φCA=B

Proof

Step Hyp Ref Expression
1 laddrotrd.a φA
2 laddrotrd.b φB
3 laddrotrd.1 φA+B=C
4 1 2 3 mvlladdd φB=CA
5 4 eqcomd φCA=B