Metamath Proof Explorer


Theorem largei

Description: A Hilbert lattice admits a largei set of states. Remark in Mayet p. 370. (Contributed by NM, 7-Apr-2001) (New usage is discouraged.)

Ref Expression
Hypothesis large.1 AC
Assertion largei ¬A=0fStatesfA=1

Proof

Step Hyp Ref Expression
1 large.1 AC
2 ralnex fStates¬fA=1¬fStatesfA=1
3 ax-1ne0 10
4 3 neii ¬1=0
5 st0 fStatesf0=0
6 5 eqeq1d fStatesf0=10=1
7 eqcom 0=11=0
8 6 7 bitrdi fStatesf0=11=0
9 4 8 mtbiri fStates¬f0=1
10 mtt ¬f0=1¬fA=1fA=1f0=1
11 9 10 syl fStates¬fA=1fA=1f0=1
12 11 ralbiia fStates¬fA=1fStatesfA=1f0=1
13 h0elch 0C
14 1 13 strb fStatesfA=1f0=1A0
15 1 chle0i A0A=0
16 12 14 15 3bitri fStates¬fA=1A=0
17 2 16 bitr3i ¬fStatesfA=1A=0
18 17 con1bii ¬A=0fStatesfA=1