Metamath Proof Explorer


Theorem latj12

Description: Swap 1st and 2nd members of lattice join. ( chj12 analog.) (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses latjass.b B=BaseK
latjass.j ˙=joinK
Assertion latj12 KLatXBYBZBX˙Y˙Z=Y˙X˙Z

Proof

Step Hyp Ref Expression
1 latjass.b B=BaseK
2 latjass.j ˙=joinK
3 1 2 latjcom KLatXBYBX˙Y=Y˙X
4 3 3adant3r3 KLatXBYBZBX˙Y=Y˙X
5 4 oveq1d KLatXBYBZBX˙Y˙Z=Y˙X˙Z
6 1 2 latjass KLatXBYBZBX˙Y˙Z=X˙Y˙Z
7 simpl KLatXBYBZBKLat
8 simpr2 KLatXBYBZBYB
9 simpr1 KLatXBYBZBXB
10 simpr3 KLatXBYBZBZB
11 1 2 latjass KLatYBXBZBY˙X˙Z=Y˙X˙Z
12 7 8 9 10 11 syl13anc KLatXBYBZBY˙X˙Z=Y˙X˙Z
13 5 6 12 3eqtr3d KLatXBYBZBX˙Y˙Z=Y˙X˙Z