Metamath Proof Explorer


Theorem latm4

Description: Rearrangement of lattice meet of 4 classes. ( in4 analog.) (Contributed by NM, 8-Nov-2011)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latm4 KOLXBYBZBWBX˙Y˙Z˙W=X˙Z˙Y˙W

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 simp1 KOLXBYBZBWBKOL
4 simp2r KOLXBYBZBWBYB
5 simp3l KOLXBYBZBWBZB
6 simp3r KOLXBYBZBWBWB
7 1 2 latm12 KOLYBZBWBY˙Z˙W=Z˙Y˙W
8 3 4 5 6 7 syl13anc KOLXBYBZBWBY˙Z˙W=Z˙Y˙W
9 8 oveq2d KOLXBYBZBWBX˙Y˙Z˙W=X˙Z˙Y˙W
10 simp2l KOLXBYBZBWBXB
11 ollat KOLKLat
12 11 3ad2ant1 KOLXBYBZBWBKLat
13 1 2 latmcl KLatZBWBZ˙WB
14 12 5 6 13 syl3anc KOLXBYBZBWBZ˙WB
15 1 2 latmassOLD KOLXBYBZ˙WBX˙Y˙Z˙W=X˙Y˙Z˙W
16 3 10 4 14 15 syl13anc KOLXBYBZBWBX˙Y˙Z˙W=X˙Y˙Z˙W
17 1 2 latmcl KLatYBWBY˙WB
18 12 4 6 17 syl3anc KOLXBYBZBWBY˙WB
19 1 2 latmassOLD KOLXBZBY˙WBX˙Z˙Y˙W=X˙Z˙Y˙W
20 3 10 5 18 19 syl13anc KOLXBYBZBWBX˙Z˙Y˙W=X˙Z˙Y˙W
21 9 16 20 3eqtr4d KOLXBYBZBWBX˙Y˙Z˙W=X˙Z˙Y˙W