Metamath Proof Explorer


Theorem latmrot

Description: Rotate lattice meet of 3 classes. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latmrot KOLXBYBZBX˙Y˙Z=Z˙X˙Y

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 ollat KOLKLat
4 3 adantr KOLXBYBZBKLat
5 simpr1 KOLXBYBZBXB
6 simpr2 KOLXBYBZBYB
7 1 2 latmcl KLatXBYBX˙YB
8 4 5 6 7 syl3anc KOLXBYBZBX˙YB
9 simpr3 KOLXBYBZBZB
10 1 2 latmcom KLatX˙YBZBX˙Y˙Z=Z˙X˙Y
11 4 8 9 10 syl3anc KOLXBYBZBX˙Y˙Z=Z˙X˙Y
12 simpl KOLXBYBZBKOL
13 1 2 latmassOLD KOLZBXBYBZ˙X˙Y=Z˙X˙Y
14 12 9 5 6 13 syl13anc KOLXBYBZBZ˙X˙Y=Z˙X˙Y
15 11 14 eqtr4d KOLXBYBZBX˙Y˙Z=Z˙X˙Y