Metamath Proof Explorer


Theorem lautle

Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012)

Ref Expression
Hypotheses lautset.b B=BaseK
lautset.l ˙=K
lautset.i I=LAutK
Assertion lautle KVFIXBYBX˙YFX˙FY

Proof

Step Hyp Ref Expression
1 lautset.b B=BaseK
2 lautset.l ˙=K
3 lautset.i I=LAutK
4 1 2 3 islaut KVFIF:B1-1 ontoBxByBx˙yFx˙Fy
5 4 simplbda KVFIxByBx˙yFx˙Fy
6 breq1 x=Xx˙yX˙y
7 fveq2 x=XFx=FX
8 7 breq1d x=XFx˙FyFX˙Fy
9 6 8 bibi12d x=Xx˙yFx˙FyX˙yFX˙Fy
10 breq2 y=YX˙yX˙Y
11 fveq2 y=YFy=FY
12 11 breq2d y=YFX˙FyFX˙FY
13 10 12 bibi12d y=YX˙yFX˙FyX˙YFX˙FY
14 9 13 rspc2v XBYBxByBx˙yFx˙FyX˙YFX˙FY
15 5 14 mpan9 KVFIXBYBX˙YFX˙FY