Metamath Proof Explorer


Theorem lautlt

Description: Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses lautlt.b B=BaseK
lautlt.s <˙=<K
lautlt.i I=LAutK
Assertion lautlt KAFIXBYBX<˙YFX<˙FY

Proof

Step Hyp Ref Expression
1 lautlt.b B=BaseK
2 lautlt.s <˙=<K
3 lautlt.i I=LAutK
4 simpl KAFIXBYBKA
5 simpr1 KAFIXBYBFI
6 simpr2 KAFIXBYBXB
7 simpr3 KAFIXBYBYB
8 eqid K=K
9 1 8 3 lautle KAFIXBYBXKYFXKFY
10 4 5 6 7 9 syl22anc KAFIXBYBXKYFXKFY
11 1 3 laut11 KAFIXBYBFX=FYX=Y
12 4 5 6 7 11 syl22anc KAFIXBYBFX=FYX=Y
13 12 bicomd KAFIXBYBX=YFX=FY
14 13 necon3bid KAFIXBYBXYFXFY
15 10 14 anbi12d KAFIXBYBXKYXYFXKFYFXFY
16 8 2 pltval KAXBYBX<˙YXKYXY
17 16 3adant3r1 KAFIXBYBX<˙YXKYXY
18 1 3 lautcl KAFIXBFXB
19 4 5 6 18 syl21anc KAFIXBYBFXB
20 1 3 lautcl KAFIYBFYB
21 4 5 7 20 syl21anc KAFIXBYBFYB
22 8 2 pltval KAFXBFYBFX<˙FYFXKFYFXFY
23 4 19 21 22 syl3anc KAFIXBYBFX<˙FYFXKFYFXFY
24 15 17 23 3bitr4d KAFIXBYBX<˙YFX<˙FY