Metamath Proof Explorer


Theorem lcfl3

Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015)

Ref Expression
Hypotheses lcfl3.h H = LHyp K
lcfl3.o ˙ = ocH K W
lcfl3.u U = DVecH K W
lcfl3.v V = Base U
lcfl3.a A = LSAtoms U
lcfl3.f F = LFnl U
lcfl3.l L = LKer U
lcfl3.c C = f F | ˙ ˙ L f = L f
lcfl3.k φ K HL W H
lcfl3.g φ G F
Assertion lcfl3 φ G C ˙ L G A L G = V

Proof

Step Hyp Ref Expression
1 lcfl3.h H = LHyp K
2 lcfl3.o ˙ = ocH K W
3 lcfl3.u U = DVecH K W
4 lcfl3.v V = Base U
5 lcfl3.a A = LSAtoms U
6 lcfl3.f F = LFnl U
7 lcfl3.l L = LKer U
8 lcfl3.c C = f F | ˙ ˙ L f = L f
9 lcfl3.k φ K HL W H
10 lcfl3.g φ G F
11 1 2 3 4 6 7 8 9 10 lcfl2 φ G C ˙ ˙ L G V L G = V
12 1 2 3 4 5 6 7 9 10 dochkrsat2 φ ˙ ˙ L G V ˙ L G A
13 12 orbi1d φ ˙ ˙ L G V L G = V ˙ L G A L G = V
14 11 13 bitrd φ G C ˙ L G A L G = V