Metamath Proof Explorer


Theorem lcfrlem12N

Description: Lemma for lcfr . (Contributed by NM, 23-Feb-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcf1o.h H = LHyp K
lcf1o.o ˙ = ocH K W
lcf1o.u U = DVecH K W
lcf1o.v V = Base U
lcf1o.a + ˙ = + U
lcf1o.t · ˙ = U
lcf1o.s S = Scalar U
lcf1o.r R = Base S
lcf1o.z 0 ˙ = 0 U
lcf1o.f F = LFnl U
lcf1o.l L = LKer U
lcf1o.d D = LDual U
lcf1o.q Q = 0 D
lcf1o.c C = f F | ˙ ˙ L f = L f
lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcflo.k φ K HL W H
lcfrlem10.x φ X V 0 ˙
lcfrlem12.b B = 0 S
lcfrlem12.y φ Y ˙ X
Assertion lcfrlem12N φ J X Y = B

Proof

Step Hyp Ref Expression
1 lcf1o.h H = LHyp K
2 lcf1o.o ˙ = ocH K W
3 lcf1o.u U = DVecH K W
4 lcf1o.v V = Base U
5 lcf1o.a + ˙ = + U
6 lcf1o.t · ˙ = U
7 lcf1o.s S = Scalar U
8 lcf1o.r R = Base S
9 lcf1o.z 0 ˙ = 0 U
10 lcf1o.f F = LFnl U
11 lcf1o.l L = LKer U
12 lcf1o.d D = LDual U
13 lcf1o.q Q = 0 D
14 lcf1o.c C = f F | ˙ ˙ L f = L f
15 lcf1o.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
16 lcflo.k φ K HL W H
17 lcfrlem10.x φ X V 0 ˙
18 lcfrlem12.b B = 0 S
19 lcfrlem12.y φ Y ˙ X
20 1 3 16 dvhlmod φ U LMod
21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lcfrlem10 φ J X F
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 lcfrlem11 φ L J X = ˙ X
23 19 22 eleqtrrd φ Y L J X
24 7 18 10 11 lkrf0 U LMod J X F Y L J X J X Y = B
25 20 21 23 24 syl3anc φ J X Y = B