Metamath Proof Explorer


Theorem lcmineqlem9

Description: (1-x)^(N-M) is continuous. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem9.1 φM
lcmineqlem9.2 φN
lcmineqlem9.3 φMN
Assertion lcmineqlem9 φx1xNM:cn

Proof

Step Hyp Ref Expression
1 lcmineqlem9.1 φM
2 lcmineqlem9.2 φN
3 lcmineqlem9.3 φMN
4 nfv xφ
5 ax-1cn 1
6 eqid x1x=x1x
7 6 sub2cncf 1x1x:cn
8 5 7 mp1i φx1x:cn
9 1 nnzd φM
10 2 nnzd φN
11 znn0sub MNMNNM0
12 9 10 11 syl2anc φMNNM0
13 3 12 mpbid φNM0
14 expcncf NM0yyNM:cn
15 13 14 syl φyyNM:cn
16 ssidd φ
17 oveq1 y=1xyNM=1xNM
18 4 8 15 16 17 cncfcompt2 φx1xNM:cn