Metamath Proof Explorer


Theorem lcvpss

Description: The covers relation implies proper subset. ( cvpss analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvfbr.s S=LSubSpW
lcvfbr.c C=LW
lcvfbr.w φWX
lcvfbr.t φTS
lcvfbr.u φUS
lcvpss.d φTCU
Assertion lcvpss φTU

Proof

Step Hyp Ref Expression
1 lcvfbr.s S=LSubSpW
2 lcvfbr.c C=LW
3 lcvfbr.w φWX
4 lcvfbr.t φTS
5 lcvfbr.u φUS
6 lcvpss.d φTCU
7 1 2 3 4 5 lcvbr φTCUTU¬sSTssU
8 6 7 mpbid φTU¬sSTssU
9 8 simpld φTU