Metamath Proof Explorer


Theorem lduallkr3

Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015)

Ref Expression
Hypotheses lduallkr3.h H=LSHypW
lduallkr3.f F=LFnlW
lduallkr3.k K=LKerW
lduallkr3.d D=LDualW
lduallkr3.o 0˙=0D
lduallkr3.w φWLVec
lduallkr3.g φGF
Assertion lduallkr3 φKGHG0˙

Proof

Step Hyp Ref Expression
1 lduallkr3.h H=LSHypW
2 lduallkr3.f F=LFnlW
3 lduallkr3.k K=LKerW
4 lduallkr3.d D=LDualW
5 lduallkr3.o 0˙=0D
6 lduallkr3.w φWLVec
7 lduallkr3.g φGF
8 eqid BaseW=BaseW
9 eqid ScalarW=ScalarW
10 eqid 0ScalarW=0ScalarW
11 8 9 10 1 2 3 6 7 lkrshp3 φKGHGBaseW×0ScalarW
12 lveclmod WLVecWLMod
13 6 12 syl φWLMod
14 8 9 10 4 5 13 ldual0v φ0˙=BaseW×0ScalarW
15 14 neeq2d φG0˙GBaseW×0ScalarW
16 11 15 bitr4d φKGHG0˙