Metamath Proof Explorer


Theorem le2tri3i

Description: Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000)

Ref Expression
Hypotheses lt.1 A
lt.2 B
lt.3 C
Assertion le2tri3i ABBCCAA=BB=CC=A

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 lt.3 C
4 2 3 1 letri BCCABA
5 1 2 letri3i A=BABBA
6 5 biimpri ABBAA=B
7 4 6 sylan2 ABBCCAA=B
8 7 3impb ABBCCAA=B
9 3 1 2 letri CAABCB
10 2 3 letri3i B=CBCCB
11 10 biimpri BCCBB=C
12 9 11 sylan2 BCCAABB=C
13 12 3impb BCCAABB=C
14 13 3comr ABBCCAB=C
15 1 2 3 letri ABBCAC
16 1 3 letri3i A=CACCA
17 16 biimpri ACCAA=C
18 17 eqcomd ACCAC=A
19 15 18 stoic3 ABBCCAC=A
20 8 14 19 3jca ABBCCAA=BB=CC=A
21 1 eqlei A=BAB
22 2 eqlei B=CBC
23 3 eqlei C=ACA
24 21 22 23 3anim123i A=BB=CC=AABBCCA
25 20 24 impbii ABBCCAA=BB=CC=A