Metamath Proof Explorer


Theorem lemuldiv2

Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)

Ref Expression
Assertion lemuldiv2 ABC0<CCABABC

Proof

Step Hyp Ref Expression
1 recn AA
2 recn CC
3 mulcom ACAC=CA
4 1 2 3 syl2an ACAC=CA
5 4 adantrr AC0<CAC=CA
6 5 3adant2 ABC0<CAC=CA
7 6 breq1d ABC0<CACBCAB
8 lemuldiv ABC0<CACBABC
9 7 8 bitr3d ABC0<CCABABC