Metamath Proof Explorer


Theorem lgamcl

Description: The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion lgamcl A log Γ A

Proof

Step Hyp Ref Expression
1 eqid x | x r k 0 1 r x + k = x | x r k 0 1 r x + k
2 id A A
3 eqid n A log n + 1 n log A n + 1 = n A log n + 1 n log A n + 1
4 1 2 3 lgamcvglem A log Γ A seq 1 + n A log n + 1 n log A n + 1 log Γ A + log A
5 4 simpld A log Γ A