Metamath Proof Explorer


Theorem lgamf

Description: The log-Gamma function is a complex function defined on the whole complex plane except for the negative integers. (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Assertion lgamf log Γ :

Proof

Step Hyp Ref Expression
1 ovexd x n x log n + 1 n log x n + 1 log x V
2 df-lgam log Γ = x n x log n + 1 n log x n + 1 log x
3 2 a1i log Γ = x n x log n + 1 n log x n + 1 log x
4 lgamcl x log Γ x
5 4 adantl x log Γ x
6 1 3 5 fmpt2d log Γ :
7 6 mptru log Γ :