Metamath Proof Explorer


Theorem lgsdir2lem3

Description: Lemma for lgsdir2 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgsdir2lem3 A¬2AAmod81735

Proof

Step Hyp Ref Expression
1 simpl A¬2AA
2 8nn 8
3 zmodfz A8Amod8081
4 1 2 3 sylancl A¬2AAmod8081
5 8m1e7 81=7
6 5 oveq2i 081=07
7 4 6 eleqtrdi A¬2AAmod807
8 neg1z 1
9 z0even 20
10 1pneg1e0 1+-1=0
11 ax-1cn 1
12 neg1cn 1
13 11 12 addcomi 1+-1=-1+1
14 10 13 eqtr3i 0=-1+1
15 9 14 breqtri 2-1+1
16 noel ¬Amod8
17 16 pm2.21i Amod8Amod81735
18 neg1lt0 1<0
19 0z 0
20 fzn 011<001=
21 19 8 20 mp2an 1<001=
22 18 21 mpbi 01=
23 17 22 eleq2s Amod801Amod81735
24 23 a1i A¬2AAmod801Amod81735
25 8 15 24 3pm3.2i 12-1+1A¬2AAmod801Amod81735
26 1e0p1 1=0+1
27 ssun1 171735
28 1ex 1V
29 28 prid1 117
30 27 29 sselii 11735
31 25 14 26 30 lgsdir2lem2 121+1A¬2AAmod801Amod81735
32 df-2 2=1+1
33 df-3 3=2+1
34 ssun2 351735
35 3ex 3V
36 35 prid1 335
37 34 36 sselii 31735
38 31 32 33 37 lgsdir2lem2 323+1A¬2AAmod803Amod81735
39 df-4 4=3+1
40 df-5 5=4+1
41 5nn 5
42 41 elexi 5V
43 42 prid2 535
44 34 43 sselii 51735
45 38 39 40 44 lgsdir2lem2 525+1A¬2AAmod805Amod81735
46 df-6 6=5+1
47 df-7 7=6+1
48 7nn 7
49 48 elexi 7V
50 49 prid2 717
51 27 50 sselii 71735
52 45 46 47 51 lgsdir2lem2 727+1A¬2AAmod807Amod81735
53 52 simp3i A¬2AAmod807Amod81735
54 7 53 mpd A¬2AAmod81735