Metamath Proof Explorer


Theorem lgsval4lem

Description: Lemma for lgsval4 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
Assertion lgsval4lem ANN0F=nifnA/LnnpCntN1

Proof

Step Hyp Ref Expression
1 lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
2 eqid mifmifm=2if2A0ifAmod81711Am12+1modm1mpCntn1=mifmifm=2if2A0ifAmod81711Am12+1modm1mpCntn1
3 2 lgsval2lem AnA/Ln=ifn=2if2A0ifAmod81711An12+1modn1
4 3 3ad2antl1 ANN0nA/Ln=ifn=2if2A0ifAmod81711An12+1modn1
5 4 oveq1d ANN0nA/LnnpCntN=ifn=2if2A0ifAmod81711An12+1modn1npCntN
6 5 ifeq1da ANN0ifnA/LnnpCntN1=ifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
7 6 mpteq2dv ANN0nifnA/LnnpCntN1=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
8 1 7 eqtr4id ANN0F=nifnA/LnnpCntN1