Metamath Proof Explorer


Theorem lidl0cl

Description: An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidlcl.u U=LIdealR
lidl0cl.z 0˙=0R
Assertion lidl0cl RRingIU0˙I

Proof

Step Hyp Ref Expression
1 lidlcl.u U=LIdealR
2 lidl0cl.z 0˙=0R
3 rlm0 0R=0ringLModR
4 2 3 eqtri 0˙=0ringLModR
5 rlmlmod RRingringLModRLMod
6 simpr RRingIUIU
7 lidlval LIdealR=LSubSpringLModR
8 1 7 eqtri U=LSubSpringLModR
9 6 8 eleqtrdi RRingIUILSubSpringLModR
10 eqid 0ringLModR=0ringLModR
11 eqid LSubSpringLModR=LSubSpringLModR
12 10 11 lss0cl ringLModRLModILSubSpringLModR0ringLModRI
13 5 9 12 syl2an2r RRingIU0ringLModRI
14 4 13 eqeltrid RRingIU0˙I