Metamath Proof Explorer


Theorem lidl1

Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lidl0.u U=LIdealR
lidl1.b B=BaseR
Assertion lidl1 RRingBU

Proof

Step Hyp Ref Expression
1 lidl0.u U=LIdealR
2 lidl1.b B=BaseR
3 rlmlmod RRingringLModRLMod
4 rlmbas BaseR=BaseringLModR
5 2 4 eqtri B=BaseringLModR
6 eqid LSubSpringLModR=LSubSpringLModR
7 5 6 lss1 ringLModRLModBLSubSpringLModR
8 3 7 syl RRingBLSubSpringLModR
9 lidlval LIdealR=LSubSpringLModR
10 1 9 eqtri U=LSubSpringLModR
11 8 10 eleqtrrdi RRingBU