Metamath Proof Explorer


Theorem lidldomnnring

Description: A (left) ideal of a domain which is neither the zero ideal nor the unit ideal is not a unital ring. (Contributed by AV, 18-Feb-2020)

Ref Expression
Hypotheses lidlabl.l L = LIdeal R
lidlabl.i I = R 𝑠 U
zlidlring.b B = Base R
zlidlring.0 0 ˙ = 0 R
Assertion lidldomnnring R Domn U L U 0 ˙ U B I Ring

Proof

Step Hyp Ref Expression
1 lidlabl.l L = LIdeal R
2 lidlabl.i I = R 𝑠 U
3 zlidlring.b B = Base R
4 zlidlring.0 0 ˙ = 0 R
5 neanior U 0 ˙ U B ¬ U = 0 ˙ U = B
6 5 biimpi U 0 ˙ U B ¬ U = 0 ˙ U = B
7 6 3adant1 U L U 0 ˙ U B ¬ U = 0 ˙ U = B
8 7 adantl R Domn U L U 0 ˙ U B ¬ U = 0 ˙ U = B
9 df-nel I Ring ¬ I Ring
10 1 2 3 4 uzlidlring R Domn U L I Ring U = 0 ˙ U = B
11 10 3ad2antr1 R Domn U L U 0 ˙ U B I Ring U = 0 ˙ U = B
12 11 notbid R Domn U L U 0 ˙ U B ¬ I Ring ¬ U = 0 ˙ U = B
13 9 12 syl5bb R Domn U L U 0 ˙ U B I Ring ¬ U = 0 ˙ U = B
14 8 13 mpbird R Domn U L U 0 ˙ U B I Ring