| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limclr.k |
|
| 2 |
|
limclr.a |
|
| 3 |
|
limclr.j |
|
| 4 |
|
limclr.f |
|
| 5 |
|
limclr.lp1 |
|
| 6 |
|
limclr.lp2 |
|
| 7 |
|
limclr.l |
|
| 8 |
|
limclr.r |
|
| 9 |
|
neqne |
|
| 10 |
2
|
adantr |
|
| 11 |
4
|
adantr |
|
| 12 |
5
|
adantr |
|
| 13 |
6
|
adantr |
|
| 14 |
7
|
adantr |
|
| 15 |
8
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
1 10 3 11 12 13 14 15 16
|
limclner |
|
| 18 |
|
nne |
|
| 19 |
17 18
|
sylibr |
|
| 20 |
9 19
|
sylan2 |
|
| 21 |
20
|
ex |
|
| 22 |
21
|
con4d |
|
| 23 |
2
|
adantr |
|
| 24 |
4
|
adantr |
|
| 25 |
|
retop |
|
| 26 |
3 25
|
eqeltri |
|
| 27 |
|
inss2 |
|
| 28 |
|
ioossre |
|
| 29 |
27 28
|
sstri |
|
| 30 |
|
uniretop |
|
| 31 |
3
|
eqcomi |
|
| 32 |
31
|
unieqi |
|
| 33 |
30 32
|
eqtri |
|
| 34 |
33
|
lpss |
|
| 35 |
26 29 34
|
mp2an |
|
| 36 |
35 5
|
sselid |
|
| 37 |
36
|
adantr |
|
| 38 |
7
|
adantr |
|
| 39 |
8
|
adantr |
|
| 40 |
|
simpr |
|
| 41 |
1 23 3 24 37 38 39 40
|
limcleqr |
|
| 42 |
41
|
ne0d |
|
| 43 |
42
|
ex |
|
| 44 |
22 43
|
impbid |
|
| 45 |
41
|
ex |
|
| 46 |
44 45
|
jca |
|