Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | limexissupab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni | |
|
2 | 1 | adantr | |
3 | limord | |
|
4 | ordsson | |
|
5 | 3 4 | syl | |
6 | onsupuni | |
|
7 | 5 6 | sylan | |
8 | abid1 | |
|
9 | supeq1 | |
|
10 | 8 9 | mp1i | |
11 | 2 7 10 | 3eqtr2d | |