Metamath Proof Explorer


Theorem limexissupab

Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion limexissupab LimAAVA=supx|xAOnE

Proof

Step Hyp Ref Expression
1 limuni LimAA=A
2 1 adantr LimAAVA=A
3 limord LimAOrdA
4 ordsson OrdAAOn
5 3 4 syl LimAAOn
6 onsupuni AOnAVsupAOnE=A
7 5 6 sylan LimAAVsupAOnE=A
8 abid1 A=x|xA
9 supeq1 A=x|xAsupAOnE=supx|xAOnE
10 8 9 mp1i LimAAVsupAOnE=supx|xAOnE
11 2 7 10 3eqtr2d LimAAVA=supx|xAOnE