Metamath Proof Explorer


Theorem liminfgval

Description: Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfgval.1 G=ksupFk+∞**<
Assertion liminfgval MGM=supFM+∞**<

Proof

Step Hyp Ref Expression
1 liminfgval.1 G=ksupFk+∞**<
2 oveq1 k=Mk+∞=M+∞
3 2 imaeq2d k=MFk+∞=FM+∞
4 3 ineq1d k=MFk+∞*=FM+∞*
5 4 infeq1d k=MsupFk+∞**<=supFM+∞**<
6 xrltso <Or*
7 6 infex supFM+∞**<V
8 5 1 7 fvmpt MGM=supFM+∞**<