Metamath Proof Explorer


Theorem liminfgval

Description: Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis liminfgval.1 G = k sup F k +∞ * * <
Assertion liminfgval M G M = sup F M +∞ * * <

Proof

Step Hyp Ref Expression
1 liminfgval.1 G = k sup F k +∞ * * <
2 oveq1 k = M k +∞ = M +∞
3 2 imaeq2d k = M F k +∞ = F M +∞
4 3 ineq1d k = M F k +∞ * = F M +∞ *
5 4 infeq1d k = M sup F k +∞ * * < = sup F M +∞ * * <
6 xrltso < Or *
7 6 infex sup F M +∞ * * < V
8 5 1 7 fvmpt M G M = sup F M +∞ * * <