Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Limits
Inferior limit (lim inf)
liminfgval
Next ⟩
liminfcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
liminfgval
Description:
Value of the inferior limit function.
(Contributed by
Glauco Siliprandi
, 2-Jan-2022)
Ref
Expression
Hypothesis
liminfgval.1
⊢
G
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
Assertion
liminfgval
⊢
M
∈
ℝ
→
G
⁡
M
=
sup
F
M
+∞
∩
ℝ
*
ℝ
*
<
Proof
Step
Hyp
Ref
Expression
1
liminfgval.1
⊢
G
=
k
∈
ℝ
⟼
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
2
oveq1
⊢
k
=
M
→
k
+∞
=
M
+∞
3
2
imaeq2d
⊢
k
=
M
→
F
k
+∞
=
F
M
+∞
4
3
ineq1d
⊢
k
=
M
→
F
k
+∞
∩
ℝ
*
=
F
M
+∞
∩
ℝ
*
5
4
infeq1d
⊢
k
=
M
→
sup
F
k
+∞
∩
ℝ
*
ℝ
*
<
=
sup
F
M
+∞
∩
ℝ
*
ℝ
*
<
6
xrltso
⊢
<
Or
ℝ
*
7
6
infex
⊢
sup
F
M
+∞
∩
ℝ
*
ℝ
*
<
∈
V
8
5
1
7
fvmpt
⊢
M
∈
ℝ
→
G
⁡
M
=
sup
F
M
+∞
∩
ℝ
*
ℝ
*
<