Description: Alternate definition of liminf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfval3.x | |
|
liminfval3.a | |
||
liminfval3.m | |
||
liminfval3.b | |
||
Assertion | liminfval3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfval3.x | |
|
2 | liminfval3.a | |
|
3 | liminfval3.m | |
|
4 | liminfval3.b | |
|
5 | inss1 | |
|
6 | 5 | a1i | |
7 | 2 6 | ssexd | |
8 | 1 7 4 | liminfvalxrmpt | |
9 | eqid | |
|
10 | 3 9 2 | liminfresicompt | |
11 | 10 | eqcomd | |
12 | 2 3 9 | limsupresicompt | |
13 | 12 | xnegeqd | |
14 | 8 11 13 | 3eqtr4d | |