Metamath Proof Explorer


Theorem liminfval3

Description: Alternate definition of liminf when the given function is eventually extended real-valued. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfval3.x xφ
liminfval3.a φAV
liminfval3.m φM
liminfval3.b φxAM+∞B*
Assertion liminfval3 φlim infxAB=lim supxAB

Proof

Step Hyp Ref Expression
1 liminfval3.x xφ
2 liminfval3.a φAV
3 liminfval3.m φM
4 liminfval3.b φxAM+∞B*
5 inss1 AM+∞A
6 5 a1i φAM+∞A
7 2 6 ssexd φAM+∞V
8 1 7 4 liminfvalxrmpt φlim infxAM+∞B=lim supxAM+∞B
9 eqid M+∞=M+∞
10 3 9 2 liminfresicompt φlim infxAM+∞B=lim infxAB
11 10 eqcomd φlim infxAB=lim infxAM+∞B
12 2 3 9 limsupresicompt φlim supxAB=lim supxAM+∞B
13 12 xnegeqd φlim supxAB=lim supxAM+∞B
14 8 11 13 3eqtr4d φlim infxAB=lim supxAB