Metamath Proof Explorer


Theorem liminfvaluz4

Description: Alternate definition of liminf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfvaluz4.1 kφ
liminfvaluz4.2 _kF
liminfvaluz4.3 φM
liminfvaluz4.4 Z=M
liminfvaluz4.5 φF:Z
Assertion liminfvaluz4 φlim infF=lim supkZFk

Proof

Step Hyp Ref Expression
1 liminfvaluz4.1 kφ
2 liminfvaluz4.2 _kF
3 liminfvaluz4.3 φM
4 liminfvaluz4.4 Z=M
5 liminfvaluz4.5 φF:Z
6 nfcv _kZ
7 6 2 5 feqmptdf φF=kZFk
8 7 fveq2d φlim infF=lim infkZFk
9 5 ffvelcdmda φkZFk
10 1 3 4 9 liminfvaluz2 φlim infkZFk=lim supkZFk
11 8 10 eqtrd φlim infF=lim supkZFk