Metamath Proof Explorer


Theorem limsupequzmptf

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmptf.j jφ
limsupequzmptf.o _jA
limsupequzmptf.p _jB
limsupequzmptf.m φM
limsupequzmptf.n φN
limsupequzmptf.a A=M
limsupequzmptf.b B=N
limsupequzmptf.c φjACV
limsupequzmptf.d φjBCW
Assertion limsupequzmptf φlim supjAC=lim supjBC

Proof

Step Hyp Ref Expression
1 limsupequzmptf.j jφ
2 limsupequzmptf.o _jA
3 limsupequzmptf.p _jB
4 limsupequzmptf.m φM
5 limsupequzmptf.n φN
6 limsupequzmptf.a A=M
7 limsupequzmptf.b B=N
8 limsupequzmptf.c φjACV
9 limsupequzmptf.d φjBCW
10 nfv kφ
11 2 nfcri jkA
12 1 11 nfan jφkA
13 nfcsb1v _jk/jC
14 nfcv _jV
15 13 14 nfel jk/jCV
16 12 15 nfim jφkAk/jCV
17 eleq1w j=kjAkA
18 17 anbi2d j=kφjAφkA
19 csbeq1a j=kC=k/jC
20 19 eleq1d j=kCVk/jCV
21 18 20 imbi12d j=kφjACVφkAk/jCV
22 16 21 8 chvarfv φkAk/jCV
23 3 nfcri jkB
24 1 23 nfan jφkB
25 nfcv _jW
26 13 25 nfel jk/jCW
27 24 26 nfim jφkBk/jCW
28 eleq1w j=kjBkB
29 28 anbi2d j=kφjBφkB
30 19 eleq1d j=kCWk/jCW
31 29 30 imbi12d j=kφjBCWφkBk/jCW
32 27 31 9 chvarfv φkBk/jCW
33 10 4 5 6 7 22 32 limsupequzmpt φlim supkAk/jC=lim supkBk/jC
34 nfcv _kA
35 nfcv _kC
36 2 34 35 13 19 cbvmptf jAC=kAk/jC
37 36 fveq2i lim supjAC=lim supkAk/jC
38 37 a1i φlim supjAC=lim supkAk/jC
39 nfcv _kB
40 3 39 35 13 19 cbvmptf jBC=kBk/jC
41 40 fveq2i lim supjBC=lim supkBk/jC
42 41 a1i φlim supjBC=lim supkBk/jC
43 33 38 42 3eqtr4d φlim supjAC=lim supjBC