Metamath Proof Explorer


Theorem limsupequzmptf

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmptf.j j φ
limsupequzmptf.o _ j A
limsupequzmptf.p _ j B
limsupequzmptf.m φ M
limsupequzmptf.n φ N
limsupequzmptf.a A = M
limsupequzmptf.b B = N
limsupequzmptf.c φ j A C V
limsupequzmptf.d φ j B C W
Assertion limsupequzmptf φ lim sup j A C = lim sup j B C

Proof

Step Hyp Ref Expression
1 limsupequzmptf.j j φ
2 limsupequzmptf.o _ j A
3 limsupequzmptf.p _ j B
4 limsupequzmptf.m φ M
5 limsupequzmptf.n φ N
6 limsupequzmptf.a A = M
7 limsupequzmptf.b B = N
8 limsupequzmptf.c φ j A C V
9 limsupequzmptf.d φ j B C W
10 nfv k φ
11 2 nfcri j k A
12 1 11 nfan j φ k A
13 nfcsb1v _ j k / j C
14 nfcv _ j V
15 13 14 nfel j k / j C V
16 12 15 nfim j φ k A k / j C V
17 eleq1w j = k j A k A
18 17 anbi2d j = k φ j A φ k A
19 csbeq1a j = k C = k / j C
20 19 eleq1d j = k C V k / j C V
21 18 20 imbi12d j = k φ j A C V φ k A k / j C V
22 16 21 8 chvarfv φ k A k / j C V
23 3 nfcri j k B
24 1 23 nfan j φ k B
25 nfcv _ j W
26 13 25 nfel j k / j C W
27 24 26 nfim j φ k B k / j C W
28 eleq1w j = k j B k B
29 28 anbi2d j = k φ j B φ k B
30 19 eleq1d j = k C W k / j C W
31 29 30 imbi12d j = k φ j B C W φ k B k / j C W
32 27 31 9 chvarfv φ k B k / j C W
33 10 4 5 6 7 22 32 limsupequzmpt φ lim sup k A k / j C = lim sup k B k / j C
34 nfcv _ k A
35 nfcv _ k C
36 2 34 35 13 19 cbvmptf j A C = k A k / j C
37 36 fveq2i lim sup j A C = lim sup k A k / j C
38 37 a1i φ lim sup j A C = lim sup k A k / j C
39 nfcv _ k B
40 3 39 35 13 19 cbvmptf j B C = k B k / j C
41 40 fveq2i lim sup j B C = lim sup k B k / j C
42 41 a1i φ lim sup j B C = lim sup k B k / j C
43 33 38 42 3eqtr4d φ lim sup j A C = lim sup j B C