Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limsupequzmptf.j | |
|
limsupequzmptf.o | |
||
limsupequzmptf.p | |
||
limsupequzmptf.m | |
||
limsupequzmptf.n | |
||
limsupequzmptf.a | |
||
limsupequzmptf.b | |
||
limsupequzmptf.c | |
||
limsupequzmptf.d | |
||
Assertion | limsupequzmptf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupequzmptf.j | |
|
2 | limsupequzmptf.o | |
|
3 | limsupequzmptf.p | |
|
4 | limsupequzmptf.m | |
|
5 | limsupequzmptf.n | |
|
6 | limsupequzmptf.a | |
|
7 | limsupequzmptf.b | |
|
8 | limsupequzmptf.c | |
|
9 | limsupequzmptf.d | |
|
10 | nfv | |
|
11 | 2 | nfcri | |
12 | 1 11 | nfan | |
13 | nfcsb1v | |
|
14 | nfcv | |
|
15 | 13 14 | nfel | |
16 | 12 15 | nfim | |
17 | eleq1w | |
|
18 | 17 | anbi2d | |
19 | csbeq1a | |
|
20 | 19 | eleq1d | |
21 | 18 20 | imbi12d | |
22 | 16 21 8 | chvarfv | |
23 | 3 | nfcri | |
24 | 1 23 | nfan | |
25 | nfcv | |
|
26 | 13 25 | nfel | |
27 | 24 26 | nfim | |
28 | eleq1w | |
|
29 | 28 | anbi2d | |
30 | 19 | eleq1d | |
31 | 29 30 | imbi12d | |
32 | 27 31 9 | chvarfv | |
33 | 10 4 5 6 7 22 32 | limsupequzmpt | |
34 | nfcv | |
|
35 | nfcv | |
|
36 | 2 34 35 13 19 | cbvmptf | |
37 | 36 | fveq2i | |
38 | 37 | a1i | |
39 | nfcv | |
|
40 | 3 39 35 13 19 | cbvmptf | |
41 | 40 | fveq2i | |
42 | 41 | a1i | |
43 | 33 38 42 | 3eqtr4d | |