Metamath Proof Explorer


Theorem limsupvaluz4

Description: Alternate definition of liminf for a real-valued function, defined on a set of upper integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupvaluz4.k kφ
limsupvaluz4.m φM
limsupvaluz4.z Z=M
limsupvaluz4.b φkZB
Assertion limsupvaluz4 φlim supkZB=lim infkZB

Proof

Step Hyp Ref Expression
1 limsupvaluz4.k kφ
2 limsupvaluz4.m φM
3 limsupvaluz4.z Z=M
4 limsupvaluz4.b φkZB
5 4 rexrd φkZB*
6 1 2 3 5 limsupvaluz3 φlim supkZB=lim infkZB
7 4 rexnegd φkZB=B
8 1 7 mpteq2da φkZB=kZB
9 8 fveq2d φlim infkZB=lim infkZB
10 9 xnegeqd φlim infkZB=lim infkZB
11 6 10 eqtrd φlim supkZB=lim infkZB